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SUMMARY 

The characteristics of one-dimensional electron diode with low-pressure argon scat­
tering gas a r e  analyzed by a Monte Carlo method. Experimentally determined differen­
tial elastic scattering c ross  sections, extrapolated to zero energy, are employed. 
Current-voltage characteristics are compared with those obtained from a hard-sphere 
collision model. Negative resistance is found for  low emission current densities and low 
pressure as a result of the Ramsauer cross  section. The randomization of energy be­
tween velocity components is found to  be quite large for  accelerating potentials and 
pressure-electrode separation values as low as 1/2 torr-centimeter. The energy depen­
dence of the total c ross  section has a much more pronounced effect on the current-
voltage curves than the nonisotropic scattering. 

INTRODUCTION 

A major difficulty in the study of low-density ionized gases is the lack of suitable 
analytical methods for  determining the effects of collisions. "Low density" is here de­
fined as those situations in which a characteristic dimension is of the order of a few 
mean free paths; that is, the regime wherein neither a collisionless nor a diffusion ap­
proximation can be expected to represent the actual situation. This region is of impor­
tance in low-pressure thermionic diodes, plasma sheaths, ion engines, and cross-section 
measurements. 

Much effort has been expended to obtain solutions of the Boltzmann transport equation 
for low-density neutral gases (ref. 1). Little work has been done on the extension of these 
methods to  low-density ionized gases. Sockol (ref. 2) has recently succeeded in numeri­

* 
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cally integrating the Boltzmann transport equation for a particular low-density ionized gas 
problem. Unfortunately, the numerical integration proved very difficult for even the sim­
plest hard-sphere collision cross  section; the feasibility of using this method for more 
complex collision c ross  sections has not as yet been investigated. 

The development of a Monte Carlo method for the solution of these problems was dis­
cussed in reference 3, and results were presented for the case of a hard-sphere cross  
section and Lorentz scattering gas. The present paper extends these results to energy 
and angle dependent scattering cross  sections. The particular case treated is that of ar­
gon gas, which possesses a Ramsauer total scattering cross  section. Argon was chosen 
as the scattering gas for these studies because of the relative wealth of information con­
cerning the electron-neutral differential cross  sections and a reasonably high first exci­
tation potential. The diode characteristics presented herein include current-voltage 
(I-V) curves, potential and electron-density distributions, and electron velocity and 
energy-distribution functions. 

The Monte Carlo method is, in general terms,  a technique for solving physical and 
mathematical problems by using random sampling. This method has been employed with 
considerable success to a wide variety of problems, most notably in the area of nuclear 
shielding problems (neutron transport). A short history of Monte Carlo applications is to 
be found in the paper by Goertzel and Kalos (ref. 4). An excellent discussion of the basic 
principles, including applications, is to be found in the recent book by Hammersley and 
Handscomb (ref. 5), and an extensive bibliography has been compiled by Kraft and 
Wensrich (ref. 6). While the neutron transport problems are fortunately linear, the 
method has been extended recently to certain nonlinear radiation transport problems 
(ref. 7). 

There have been some applications of the Monte Carlo method to (1) the kinetic theory 
of charged particles and (2) the collective interactions between electrons and ions. Papers 
in the first category (refs. 8 to 10) a r e  concerned with the study of spatially invariant dis­
tribution functions in the presence of a uniform electric field; finite geometry and space-
charge effects are not considered. Studies in the second category a r e  more properly re­
fer red  to as "computer experiments. " The difference in terminology reflects the fact that 
these studies approximate the physical model by a finite number of current sheets, which 
are then followed deterministically through all mutual interactions by the computer. The 
Monte Carlo method, on the other hand, most frequently implies repeated, stochastically 
independent trails. A short history of computer experiments is to be found in the paper 
by Burger (ref. 11). Recently, Burger (ref. 12) has been able to include the effect of a 
simple collision model and hence demonstrate collisional damping. Computer experi­
ments a r e  not well  adapted, however, to the study of steady-state, nonoscillatory solu­
tions employing complex collision cross sections. 
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FORMULATION OF ELECTRON DIODE PROBLEM 

The one-dimensional diode geometry is depicted in figure 1; the electrodes are in­
finite parallel planes. The electrons are emitted thermionically with a half-Maxwellian 

velocity distribution: 
Emitter Collector 

~ 

~ 

Potenti%,,-' 
/­

d 
 -/I 
10 

Spatial coordinate, x 

Figure 1. - Diode model and types of scatter. 

o s v s c o  

where u is the dimensionless velocity component in 
the x direction and V is the dimensionless velocity 
component perpendicular to u. (All symbols are de­
fined in the appendix.) The corresponding dimensional 
components a r e  given by u d z and d x ,  
respectively (m is the electron mass, and kT/e is 
the emitter temperature in electron volts where e is 
the electronic charge). Equation (1)is given in cylin­
drical coordinates with the azimuthal angle integrated 
out because of the symmetry of the one-dimensional 
geometry. 

The neutral gas is assumed to be stationary and of infinite mass,  the electrodes are 
perfectly absorbing, and the electron density is low enough that only electron-neutral col­
lisions need be considered. Furthermore, the collector potential will be limited to a 
range wherein electron-neutral interactions are perfectly elastic. This latter restriction 
implies that the kinetic energy of each electron is a function of only its initial energy and 
its position x in the diode. 

The total and the differential c ross  sections for elastic electron-neutral scattering in 
argon have been obtained down to zero energy by employing O'Malley's extrapolation 
(ref. 13) in conjunction with the experimental data of Ramsauer and Kollath (ref. 14). A 
plot of the total collision cross  section employed and a sketch of the surface obtained by 
plotting the differential cross  section against scattering angle and energy a r e  shown in 
figure 2. A s  can be observed in figure 2(b), there is predominant forward scattering at 
high electron energies. 

Our problem is, in essence, to obtain solutions to Poisson's equation 

rp"(x) = Cn(x) (2) 

N N 

where 'p = eV/kT, V is the potential in volts, n(x) is the dimensionless electron density 
in units of Jo/ed=, Jo is the emitted electron current density, the space-charge 
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(b) Differential scattering. 

Figure 2. - Argon electron cross section. 

parameter C is given by 

c =(")('T m 1 l 2 e J0L2, (mks units)- __ 
2kT

�0 


or  

C = 4.215 1011T-3/2J L2 
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0 . 1  .2 . 3  .4  .5  . 6  . 7  . 8  .9 1.0 
Dimensionless interelectrode distance, x 

Figure 3. - Potential distribution. Space-charge parameter, 
C - %, pressure-distance ratio, pL - 1.9 temperature, 
T - 1800" K; potential slope,-V(0)- -10. 

where L is the electrode separation, and the distance from the emitter is given by xL. 
A typical potential distribution is shown in figure 3. 

MONTE CARLO SOLUTION 

The general method of solution is discussed in detail in reference 3, hence only a 
brief summary will be given here. 

To initiate a solution of equation (2) for given values of C and q '(0)', a potential 
distribution is assumed. The corresponding density distribution is then obtained by sam­
pling a large number of test electrons. It must be emphasized, however, thai the initial 
velocity components of the test "electrons" a r e  not chosen from the distribution function 
given by equation (1). Test "electrons" is an unfortunate misnomer, since the statistics 
must be obtained for units of electron flux - not units of charge. Hence, the initial veloc­
ities must be chosen from the velocity distribution of flux g(u, V) uf(u, V): 

g(u,v) = 4uv exp[-(u2 + v2j  (4) 

The test electron is then followed throughout its trajectory within the interelectrode 
space. The distance to collision 2 is chosen from the probability distribution 

where x is an effective mean free path. The energy dependent mean free path is ob­
tained from the total collision cross  section (T given in figure 2(a) by the expression 

'The collector potential q(1) was not specified because the Picard iteration em­
ployed is not consistently stable under these conditions. 
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Ap is plotted in figure 4 for T = 273' K,
g 

. 6  where p and T are the gaspressureand
g

temperature, respectively. Now since the 
mean free path is a function of the electron 

. 4  
kinetic energy E (stationary target particles), 
a x is defined in the following way: The in--
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c
=; . 2  terelectrode region is subdivided into a num-
I-
-5 ber of cells by imaginary planes parallel to 

I 
l i  I I I I I I I i ! the electrodes. A s  a test electron enters a -G O  2 4 6 8 10 cell, the average kinetic energy of the 
3 Electron kinetic energy, eV 
v) 

(a) Energy range, 0 5 E <_ 10 electron volts. electron in that cell is computed on the
2 	.8­

5 assumption that no collision takes place before 


-L the electron leaves the cell again. (If the elec­
tron does not have a turning point in the cell, 
then E is simply the sum of the kinetic energy 
entering the cell plus one-half the potential 
difference across  the cell.) The effective 
mean free path in this cell is then taken to be -
h = A@). 

The contribution of each test electron to 
. 4  .60 

I 
.2
I I I I .I L. 

.8
1 _I 

1.0 the density n(x) is sampled at prescribed data 
Electron kinetic energy, eV points xk. After sampling enough test elec­

(b) Energy range, 0 5 E 5 1electron volt. trons to obtain reasonable statistics on the 
Figure 4. - Argon-electron-atom mean free path; gas sampled quantities n(xk), a curve f i t  is effec­temperature, 273" K. 

ted to obtain n(x). Equation (2) is then solved 
to obtain a new cp (x). 

The procedure is continued until convergence on q ( x )  is obtained (in a statistical 
sense, ref. 3). The nonlinearity of this problem is evidenced by the fact that n(x) is a 
function of both collisions and potential. 

Each solution of equation (2) results in a potential distribution cp(x), a density dis­
tribution n(x), and a point on the I-V curve. 

RESULTS 

In figure 5, current-voltage characteristics are shown for two values of the space-
charge parameter C and an emitter temperature of 1800' K (kT = 0.155 eV). The solid 
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Mean free path to 
electrode spacing ratio, 

AlL 

U (a) Space-charge parameter, C = 50. 

Mean free path 

_-- Collisionless space-
charge solution 

Pressure-distance 
ratio, 

-4 0 4 8 12 16 20 24 28 32 

Dimensionless potential, p(l) 


I I I I I I I I I I 

-.62 0 .62 1.24 1.86 2.48 3.10 3.72 4.344.96 


Potential, V 

(b) Space-charge parameter, C = 5. 

Figure 5. -Effect of mean free path on current-voltage 
curves. Temperature, T = 1800"K. 

curves represent results obtained using 
energy-independent mean free paths and 
isotropic scattering. The dot-dash 
curve was obtained from Langmuirs 
collisionless space-charge solution 
(ref. 15). The dashed curves were ob­
tained using argon total and differential 
scattering c ross  sections (fig. 2). 

Of great interest here is the com­
parison between the results of the oft 
employed hard-sphere model (solid 
curves) and more realistic cross-
section data (dashed curves). Consider 
the lower dashed curve in figure 5(a). 
Here pL = 1.0.  (Note, specifying pL, 
A/L is obtained from fig. 4 . )  For 
q(1) 5 0,  this curve lies near the I-V 

curve for the hard-sphere model cor­
responding to A/L = 1; while for higher 
collector potentials q(1) 5 20, it lies 
below the hard-sphere curve A/L = 0.2. 

In general, the attenuation of cur­
rent due to collisions is effected in two 
ways : backscattering collisions which 
return electrons directly to the emitter 

and collisions in the interelectrode space which increase the space charge thereby causing 
more electrons to be reflected by the potential field back to the emitter. The effect of 
backscattering may be observed in the constant mean free path for  high-accelerating po­
tentials (cf. A/L = l for q(1) > 18) where space-charge effects have become negligible. 

Both of the above effects can help explain the increased current attenuation at higher 
potentials for electron flow in argon. For C = 50 (fig. 5(a)), very high potentials must 
be reached before the space-charge barr ier  near the emitter is removed ~'(0)= 0. Until 
this occurs the collisional attenuation by backscattering is masked by the space-charge 
effects. 

For C = 5 (fig. 5(b)), the situation is different. The space-charge barr ier  is r e ­
moved at relatively low collector potentials, and a negative resistance characteristic is 
observed. The difference in these two cases, C = 50 and C = 5, is illustrated in figures 
6(a) and (b). Here potential distributions for q ' ( 0 )  = 0 and q ' (0 )  = 4, and the corresponding 
mean-free-path variations (from fig. 4) for 0.23-electron-volt emitted electrons have 
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(a) Space-charge parameter, C = 50. 
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-
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x 

(b) Space-charge parameter, C = 5. 

Figure 6. -Effect of space charge on mean free path. 

Emitter temperature, 
0K eV 

0 loo0 0.086 
0 18M) .155 
A wx) .215 

l l l l l l l l l l l l l  
-4 0 4 8 12 16 20 24 28 

Dimensionless potential, p(l) 

Figure 7. -Effect of emitter temperature on current-voltage 
curves. Space-charge parameter, C = 50, pressure-
distance ratio, pL = 0.5. 
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been plotted. Note that the area under 
the mean-free-path curves may be in­
terpreted as the average mean free path 
across  the diode for electrons of this 
initial energy. After the space-charge 
barr ier  is removed q ' (0 )  = 0, there is 
a much more rapid decrease in the av­
erage mean free path across  the diode 
for C = 5 than for C = 50. This de­
crease results in the observed negative 
resistance. 

In figure 7, the effect of emitter 
temperature on the I-Vcurves is shown. 
For p(1)=20, where q(1)=v(l)/(kT/e), 
the electrons at the collector are 
grouped about energies of 1.72, 3.1,  
and 4 . 3  electron volts, respectively, 
in order of increasing emitter tempera­
ture. The increased attenuation with 
temperature is thus most naturally 
associated with smaller mean free path 
(see fig. 4). The crossing-over of the 
upper two curves at lower potentials is 
no doubt due, once again, to the varia­
tion in the mean free path to the left of 
the maximum in figure 4. 

Figure 8 shows the effect of em­
ploying the differential collision cross  
section (dashed curves) rather than 
assuming isotropic scattering (solid 
curves). The increase in current for 
given collector potential obtained when 
using the differential cross  section 
may be explained on the basis of the 
predominant forward scattering. 

Figure 9 shows a typical set of 
density distributions for various initial 
potential slopes. (The corresponding 
potential distributions for q ' ( 0 )  = 0 
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Figure 8. - Effect of nonisotropic scattering on current-voltage 
curves. Space-charge parameter, C = %, temperature, 
T = 1800" I<. 
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Figure 9. - Electron density distribution. Space-charge 
parameter, C - 59 temperature, T = 1800O K; pressure-
distance ratio, pL - 0.5. 

and ~ ' ( 0 )= 4 are shown in fig. 6(a)). Of 
particular interest here is the fact that 
electron density increases in the inter-
electrode region as the collector potential 
(or, equivalently, ~'(0))is increased. 
This effect is dependent on the cross  sec­
tion and can be explained by reference to 
figure 6(a). An increase in collector po­
tential (~'(0))causes a decrease in the 
mean free path away from the emitter. A 
shorter mean free path implies more col­
lisions which, in turn, cause an increase 
in the electron density. 

DlSTRl BUTIONS FUNCTIONS 

Until now, only the macroscopic diode 
characterist'ics have been discussed. A 
deeper understanding of diode phenomena 
is obtained by considering the spatial 
variation of the velocity and energy distri­
bution functions (hereafter, d. f .  ) f (u, x) 
and f(E,x). Note that in the present prob­
lem both of these d. f .  ' s  a r e  specified for 
x = 0 and u > 0 by equation (1): 

where E = u2 + V2 is dimensionless energy. To investigate the spatial variation, the 
d.f. ' s  were obtained at x = 0, 1/2, and 1by sampling a large number of electrons (4000) 
for the two following cases: 
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(a) Velocity distr ibution function, f(u, 0). 

i3 --- Collisionless distr ibution 
j .9 of electrons= -.a  c­
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(b) Velocity distr ibution function, f(u, 1/21; potential, pP(1/2)= -0.4. 

1 . 2 r  i ! 

- 1  J I 
3.2 


Dimensionless velocity, u 

(c) Velocity distr ibution function, f(u, 1); potential, p(l)= 2.68 

Figure 10. -Variat ion in velocity distr ibution function. Space-charge 
parameter, C = 50, pressure-distance ratio, pL = 1; temperature, 
T = 1800" K; potential slope, pY0) = -19 potential minimum, 
pm= -0.94; location of potential minimum, x, = 0.23. 
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Case 1: Space-Charge Barr ier  

The distribution functions shown in figures 10 and 11 correspond to the potential dis­
tribution shown in figure 3 (p. 5) and the density distribution shown in figure 9 for 
q ' (0 )  = -10. 

The sampled d.f. , or histogram, for the u-component of velocity is shown in figures 
lO(a), (b), and (c), for x = 0, 1/2, and 1, respectively. Equation (7) is also shown in 
figure lO(a) for comparison. In the case of no collisions, all electrons emitted with 
u2 < -qm would be returned to the emitter by the space-charge barrier;  the d.f. of these 
electrons is shown as a dashed line in figure lO(a) where u < 0. The deviation between 
this curve and the histogram for u < 0 is caused by collisions. Even though the density 
of electrons for 0 > u > -0.94 has been reduced, calculations show that the current (or 
flux) of electrons back to the emitter is increased. 

In figure lO(b), the u-component d.f. at the half-way position x = 1/2 in the diode is 
shown. Since this position is to the right of the potential minimum (cf. fig. 3), there 
would be a null electron population for u <d m )= d0.425 in the collisionless case. 

The d.f. f(u, 1) is shown in figure lO(c). Here, there are no electrons with u < 0 
since the collector (and emitter) has been assumed to be perfectly absorbing. The colli­
sionless d.f. is also shown by the dashed curve. Comparison with the collisionless dis­
tribution shows that collisions have greatly reduced the population of electrons with large 
values of u. In other words, a portion of the x-directed energy acquired from the elec­
t r ic  field has been randomized by collisions. 

The energy d.f. ?s ,  f(E, 0) and f(E, l), a r e  shown in figure 11. The slight deviation be­
tween the histogram of f(E, 0) and equation (8) (shown dashed) is caused by the electrons 
returned to the emitter by collisions and reflection from the space-charge barr ier .  The 

Collisionless energy 
distr ibution 

U 
0 . 4  . 8  1.2 1.6 2.0 2.4 2.8 3.2

Square root of electron kinetic energy, 

Figure 11. -Effect of energy distr ibution function on square 
root of electron kinetic energy. Space-charge parameter, 
C = 59 pressure-distance ratio, p = 1; potential slop,
pY0) - -19 collector potential, p(l)= 2.e potential min i ­
mum, (om - -0.94. 

depletion of low-energy electrons by col­
lisions is vividly portrayed by comparison 
with the collisionless d. f .  (dashed curve, 
fig. 11) at the collector. Since all colli­
sions treated here are perfectly elastic, 
the only effect that can cause a difference 
between these curves is this depletion. 

Case 2: Monotonic Accelerating 

Potent ia  I 

In figures 12 and 13 the velocity and 
energy d. f .  ' s  are shown corresponding to 
the potential distribution shown in fig­

11 
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U 

'9- I Equation (7) 
ure  6(a) for  cp'(0) = 4. In contrast to the 
previous case, no space-charge bar r ie r  is 

-. 8  present here; also, the average mean free 

. 6  - path through the diode (see figs . 6 and the 
discussion thereof) is less, and hence, the 

­.4 collisional activity is much greater. 

. 2  - Figure 12(a) shows relatively little back­

- 0 - 1  
scattering to the emitter (u < 0). A large 

x
j -3.0 -2.5 -2.0-1.5-1.0 -.5 0 . 5  1.0 1.5 2.0 2.5 mean f ree  path near the emitter (fig. 6(a))
= Dimensionless velocity distribution, u 
c­.-0 (a) Velocity distr ibution function, f(u, 0). 

4	 - 3 - 2 - 1  0 1 2 3 4 
Dimensionless velocity distribution, u 

(b) Velocity distr ibution function, f(u, 1/21; dimension­
less potential, (~(112)= 6.76. 

-4r I 

0 1 2 3 4 5 6 
Dimensionless velocity distribution, u 

(c) Velocity distr ibution function, f(u, 1); dimension­
less potential, @I)= 23.57 (3.65 electron volts). 

Figure 12. -Variat ion in velocity distr ibution function. 
Space-charge parameter, C = 50; pressure-distance 
ratio, p l  = 0.S; temperature, T = 1800" K; potential 
slope, qI'(0)= 4. 

I ,-Minimum col­

c 5 - Equation (8) ,,! lisionless energy­t 

= 

2-/  x - 0  
I

11 

accounts for  this. Backscattered electrons 
further from the emitter have a greater 
probability of being reflected by the poten­
tial field. 

The peak in f(u, 1/2) (fig. 12(b)) is 
caused by the population of electrons that 
have not undergone collisions. The still 
greater collisional activity near the collec -
tor  all but wipes out this peak (fig. 12(c)). 
These curves are in distinct contrast to 
those of Case 1 (figs. 10(b) and (c)). 

Comparing figure 13 with figure 11 
shows the effect of lesser depletion of the 
electrons at the emitter on the energy d. f .  

Reliabi l i ty of t h e  Monte Car lo  

C a l m  lat ions 

At the present time, no rigorous method 
exists of evaluating the accuracy of the 
Monte Carlo calculations presented in this 
report. At best, certain limiting cases are 
amenable to analytical solution, and hence, 
may be used as a check on the methodology. 
One such limiting case is that of a hard-

I sphere, single-collision model (ref. 16). The 
0 1 2 3 4 5 6 Monte Carlo program (ref. 17)employed for  

Square root of electron kinetic energy, -E 

Figure 13. -Variat ion in energy distr ibution function. 	
the present calculations was checked against 
this model, and agreement was obtained within 
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three significant figures on evaluations of diode current for given collector potentials. 
Sockol (ref. 2) pointed out a peculiar deviation between his results and the Monte Carlo 

results of reference 3,  however. Although the I-V curves resulting from both methods 
were in excellent agreement, the correlation between points on the curves corresponding 
to the same initial condition (~'(0))was bad, especially at low collector potentials. This 

discrepancy has been clarified and is caused 
TABLE I. - VARIATION OF p(0) AND q(1) by a peculiar insensitivity of the ordered 

pairs  (q(1), J/Jo) defining the I-V curve to 
Potential Potential h r r e n t  density ratio, the initial conditions q ' (0 ) .  This can be 

x = 0, x =  1, 
50 '(0) Cp(U values represent the boundary condition 

-12 -0.822*0.12 0.115kO.005 specified (in addition to q ( 0 )  = 0). Com-

-12.27+0.36 -.822 
-11.73* .30 -.17 

a-12 '-. 17 

.116* .007 

.145* .008 

a. 143 

puted values are shown with the computed 
standard deviation (10 trials). Although the 
variation in ~'(0)is large, the currents 
corresponding to the same collector poten-

aRef. 2 .  tials show excellent agreement. 
The points on the I-V curves of figure 5 

(p. 7) were obtained by averaging the cur-
rents and the collector potentials obtained 

slope at at  J/Jo observed in  table I where the underlined 

.8- from 10 iterations. The standard deviation 
--0 . 6  of current aJ and voltage a were also 
7 cp 
L- . 4  computed for each point from the 10 sam­0 c 


-

0 

Space-charge ples. For C = 50, the average standard de­

," . 2  parameter, 

c C viations so computed were aJ x 0.006 and
.-0 

c 


x . 1  0 5 a cp x 0.26, while for C = 5, aJ M 0.006 and
E 

c
.-
VI .08 0 5 0  

g 
c 

.06 I Range of data 
u 

cp 
M 0.023. In figure 14, the data points 

c 

E .04 
are plotted for two cases, and the ranges ofc 


L 

u 3 *20 are explicitly indicated wherever they 
.02l I I I I I I I I I I I I I I I 1 extend beyond the symbols employed. A s  

-4 0 4 8 12 16 20 24 28 
Dimensionless potential, (~(1) can be observed, the characteristics of the 

Figure 14. - Reliability of computed values. Temperature, curves are unambiguous. 
1800° K, pressure-distance ratio, pL = 0.5. 

CONCLUSION 

The electron flow through argon gas has been analyzed for different space-charge 
conditions by a Monte Carlo method. The electrode spacings and pressures investigated 
are such that the velocity distribution functions do not reach a spatially constant form, 

In comparing a hard-sphere collision model with the more realistic model, it is ob­
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served that the energy dependence of the total cross  section has a much more noticeable 
effect on the current-voltage curves than the nonisotropic scattering. At weaker space-
charge conditions, the energy dependence of the total cross  section even results in a nega­
tive resistance characteristic. 

The velocity distributions show considerable randomization between velocity compo­
nents (parallel and perpendicular to the applied field). The energy distributions demon­
strate the effect of electrons returned to the emitter, for those electrons reaching the col­
lector after undergoing only elastic collision will have the same velocity and energy dis­
tribution functions there as they would have with no collisions. Hence, the difference be­
tween the derived energy histograms at the collector and the collisionless velocity and 
energy distribution functions is due entirely to the electrons returned to the emitter. A s  
would be expected from consideration of the energy-dependent mean free path, there is a 
predominant depletion of low-energy electrons. 

The results herein obtained from consideration of the best available elastic scattering 
cross  sections are such as to defy accurate prediction, even in a qualitative sense. Yet, 
once obtained, they are relatively easy to explain. Therein l ies perhaps the greatest 
value of the Monte Carlo method. Although it has certain drawbacks, such as quantitative 
inaccuracies and/or stringent computer requirements, no other method exists to date for 
the study of these problems. It is hoped that the insight gained by these studies will even­
tually lead to the development of still more powerful methods. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 13, 1966, 
129-02 -01-05. 

. 
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APPENDIX - SYMBOLS 

Bohr cross  section 

space-charge parameter 

dimensionless electron kinetic 
energy 

energy distribution function 

velocity distribution function 

current-density ratio to 

collector 


emitted electron current density 


emitter temperature, eV 


electrode separation 


distance for collision 


electron mass 


dimensionless electron density 


gas pressure 


gas temperature 


dimensionless velocity component 
in x-direction 

dimensionless velocity component 
transverse to u 

dimensionless distance from 
emitter 

mean free path 

effective mean free path 

total collision cross  section 

standard deviation of current to 
collector 

standard deviation of collector 
pot entia1 

potential minimum 

dimensionless potential 

collector potential 

potential slope at emitter 
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